Southern Resident killer whale monitoring on San Juan Island

This summer, from mid-July to the end of September, we studied southern resident killer whale behavior under varying levels of boat and ship traffic. (This is an extension of our 2017 field season with OrcaSound). The Port of Vancouver has asked ships to slow down to less than 11 knots as they transit Haro Strait. Reducing ship speed can reduce shipping noise underwater, but slower speeds mean those ships take longer to transit the area. Working with Port of Vancouver and SMRU Consulting, we are exploring how whales navigate that trade-off between noise level and duration of exposure.

Do the whales find more salmon if they are exposed to a little bit of noise for long periods of time? Or is it better to get the noise over with quickly? 

Reducing noise is especially important because endangered southern resident killer whales (SRKW) feed in Haro Strait in the summer, and our work has shown that vessel noise disrupts killer whale foraging. While missing one meal might not seem like it would have long-lasting or population-level effects, Haro Strait is a noisy place, which may result cumulatively in many lost meals for the killer whales. We had our team on the western hillsides of San Juan Island all summer to track killer whales in an effort to find out if and how their behavior changes with the slower, quieter ships.

A ship transits Haro Strait by a family of southern resident killer whales. (PC Toby Hall). The theodolite crosshairs allow us to convert horizontal and vertical angles to estimates of latitude and longitude, knowing the cliff height.

To track these whales, we used an instrument called a theodolite. You may have seen them on construction sites or traffic surveys. A theodolite has a telescopic lens that we use to track killer whale movement. After setting a constant reference point, the theodolite can determine the angle between the reference point and the whale we’re looking at. It gets the vertical angle from a gravity-referenced level vector. A computer connected to the theodolite can use those two angles (along with the precise location and elevation of the theodolite) to estimate distances and fixed positions of objects on the ocean’s surface (whales, ships, etc). Your geometry teacher was right—this math does have real-world applications. And we can get all of this fine-scale information noninvasively, without another research boat confounding the effect we are trying to measure. This year, the developer of Pythagoras software generously shared code to let us integrate extremely high-resolution AIS data on the movement of ships, so we could automagically collect precise and accurate data on the ships, while having our expert observers concentrate on measuring the whales’ behavior.

In 2017, the killer whales were worryingly absent from the islands much of the summer, which left us with a small sample size. In fact, for the month of August 2017, the SRKWs were nowhere to be found. This year’s longer field season produced much more data. There were 29 days with whales present around San Juan Island. We had tracking stations set up in three locations along the west side of San Juan Island: County Park, Hannah Heights, and Cattle Point, which allowed us to get close to continuous tracks along Haro Strait. We are excited to analyze the data, which should allow us to determine more about killer whale behavior in the presence of these slower ships.

Video credit: Toby Hall

This work felt profoundly important this year, in a season riddled with heartbreaking news about the endangered southern residents. J35’s calf died shortly after being born, and the mother mourned the loss of her offspring by pushing around the carcass for 17 days. J50, the youngest individual in the southern resident population, was found to be critically malnourished. NOAA launched the first attempt to supplement a southern resident killer whale’s diet with additional fish. Unfortunately she has not been seen since September 7 and is presumed dead. It is abundantly clear than additional conservation effort is needed, and our team worked hard to make this field season count, both in the field and on the Southern Resident Killer Whale Task Force.

This work wouldn’t have been possible without a super pod of a team. The Oceans Initiative team was led by Erin and Rob, and consisted of our employees Laurel Yruretagoyena, Natalie Mastick, and Laura Bogaard, as well as Toby Hall, Sarah Colosimo, Jess and Chris Newley, and Elizabeth Robinson, who provided additional field support.

Thank you, as always, for supporting our efforts to keep orca habitat clean, quiet, and full of salmon.

Please help us keep orca habitats clean, quiet, and full of fish

 

 

The critically endangered southern resident killer whale population now numbers 74 individuals. The ability of the population to recover is hindered by a perfect storm of threatsnot enough salmon, too much noise, and toxic chemicals affecting calf survival—but lack of access to salmon is at the eye of that storm.

We need to recover Chinook salmon stocks throughout the whales’ range. 

We support all efforts to do so. We support dam removal, where this will get more salmon into the environment. We applaud the recent announcement to reduce salmon fishing quotas until the whales recovery, which will reduce our competition with the whales. While we wait for those measures to take effect, we need your help to give the whales a fighting chance to find as many of those salmon as possible in a noisy ocean.

We need to give the whales a quiet place to hunt for salmon

Our work has shown that killer whales spend 18-25% less time feeding on salmon when boats are around than when they are undisturbed. We have found that the southern resident killer whale population needs 662 big, fat Chinook salmon each day. We have found that mothers with calves need 43% more calories, more salmon, than adult females without calves.

A protected area can help the whales if we put it in the right place. 

We have found that killer whales are more vulnerable to disturbance when they are feeding than when they are travelling from A to B. They also need more salmon. We have identified areas that whales use preferentially for feeding. (One is called Salmon Bank. We have a feeling the whales knew this before people did.) We need to bring together all dedicated datasets we can use to identify areas where the whales are finding salmon, so we can prioritize those for protection. Protecting key feeding areas is essential to protecting the whales.

Please support our efforts to keep orca habitat clean, quiet, and full of fat, wild salmon.

PS Thanks to our team, especially Toby Hall, for the great footage, and to our friends at SeaLegacy for help editing this video.

Teamwork

A family of orca (killer whales) works together to find food off northern Vancouver Island. (Photo taken under research permit, zoomed and cropped.)
A family of orca (killer whales) works together to find food off northern Vancouver Island. (Photo taken under research permit, zoomed and cropped.)

 

One of the things we admire most about orca or killer whale cultures is their commitment to teamwork. They work together to find food, coordinate travel, and thrive in a cold, dark environment where prey are easier to find using sound than light. These whales serve as a great template for people working together to tackle some of the world’s most pressing environmental problems, including unsustainable fishing, climate change, and ocean noise. These are challenging times.

As we enter World Oceans Week, we are inspired by the team at Sea Legacy, including the amazing conservation photographers, Cristina Mittermeier and Paul Nicklen. In words and in deed, they show that we can accomplish more #together than we can as separate voices. Taking a cue from Paul and Cristina, we’d like to offer the Oceans Initiative team three ways to help during Oceans Week.

  1. Spread the word. We do “use-inspired science” to guide effective conservation of marine wildlife. By definition, you are a key part of the research questions we ask, and what we do with the information we produce. We can’t do this without you. We’d love to hear from you. Please comment on this blog, or share it with your friends. Sign up for our newsletter. We never share lists, and we won’t fill up your inbox. Encourage your friends to like us on Facebook, and actually click the “follow” button to see what we post. We’d love to hear from you on Facebook, because the platform lends itself to back and forth conversations. Our Twitter feed is interactive, and light, but focuses on emerging science on marine conservation and solutions. We have a large and growing audience on Instagram, and we’d love to see you there. These sound like trivial things, but they matter. Many funders use social media metrics as an indicator of a nonprofit’s reach. Please help us spread the word about our work.
  2. Donate frequent flyer miles. Aeroplan, Air Canada‘s frequent flyer program, is matching all donations of Aeroplan miles 1:1, up to 500,000 miles, this week. Your donated miles help in many ways. The flights get our team to the field, bring top scientists and aspiring young biologists to join us, let us bring our skills to other countries to help build capacity in lower-income countries, and ultimately, to take the information to the meetings where important conservation decisions are made. Aeroplan even offsets the carbon footprint for every flight we redeem through this special program.
  3. Invest in our work. As much as we try to do more with less and be good stewards of charitable dollars, it still takes money to do the conservation work we do. Every dollar made to our partner charity in Canada enters us in a draw to win $10,000 from CanadaHelps. Every dollar is directed to the dolphin conservation project in British Columbia. American taxpayers can receive a tax receipt for any donation made through our website.

Thank you so much for your help. We are starting to see some real-world conservation successes emerging from our work on ocean noise and marine mammal bycatch in fisheries. Thank you for allowing us to do that work.

Which raindrop caused the flood?

KW_seiner RWA lot of the research our charity, Oceans Initiative, conducts is to see how human activities — all of them — affect marine wildlife, both in the Pacific Northwest and around the world. The iconic orca we study illustrate this problem well. According to the latest census by Center for Whale Research, the population is hovering at 84 individuals. The original problem was a live capture fishery for display in aquaria, with all the direct and collateral damage that entailed. But why aren’t they recovering, nearly 40 years after the captures stopped? Regulatory agencies in Canada and the US agree:  it’s a combination of lack of prey (Chinook salmon), too much noise, and chemical pollution.  Some of these threats are much easier to manage in the real world than others. But are we focusing on the right threats?

In our field, this thorny problem is described as “cumulative impacts of multiple anthropogenic stressors.” Clumsy, right? Our colleague, Dr David Bain, described it better:  Which raindrop caused the flood? 

It’s really, really hard to predict how wildlife populations will respond to a minefield of too much ocean noise, not enough food and a body full of chemicals. Think about that for a moment. The blubber that whales put on to survive — used by mothers to make milk for their young — is full of toxic chemicals, and the best way for a whale to detox is to transfer those pollutants to their offspring. Not great for the calf. Adult males don’t even have that option. And if you’re honest about the uncertainty in all the steps and how they fit together, your predictions span the entire range from no effect to catastrophic effects.

Our newest research proposes a way around it.  Start at the end.  Start by asking how much impact on endangered whale populations that our laws allow, and work backwards to calculate how much perturbation (noise, competition with fisheries) it would take to get there.

This approach doesn’t solve the problem, but it helps identify the problem, and the math is easier. For some critically endangered species, policy-makers may not want to allow ANY impact on a population. For healthy, growing populations, our laws allow some impact on marine mammal populations, because humans use the ocean too: for fishing, shipping, recreation, tourism and extracting energy. Our approach gives us a rough, ballpark estimate of what a healthy population can withstand.  Then, you can convene a group of scientists, managers and stakeholders to ask how likely it is that the sum total of all current and proposed activities could cause us to be exceeding that threshold.

There are a number of places around the world where this sort of exercise is needed.  As we try to ensure whale and dolphin populations recover from the Deepwater Horizon incident, it would be good to look at the cumulative effects of all activities, including seismic surveys, in the Gulf of Mexico. As we discuss opening new parts of the Arctic to oil and gas activities and shipping, we can use this method to test whether all of those activities, together, could affect food security of communities living in the Arctic. As we consider the number of industrial developments for the British Columbia coast — ports, liquefied natural gas terminals, pipelines and tanker traffic proposals — it may be time to consider how all of these factor may affect whale and dolphin populations. Some are doing fine. Others are barely hanging on. Our new tool can give us a starting point for discussion how much is too much.

We loved writing this paper with Dr Christopher Clark (an acoustician at Cornell University), Dr Len Thomas (a statistician at the University of St Andrews), and Prof Philip Hammond (a marine mammal population ecologist at the University of St Andrews).  Please check out the #openaccess paper on the website of the journal, Marine Policy:

Gauging allowable harm limits to cumulative, sub-lethal effects of human activities on wildlife: A case-study approach using two whale populations

Quiet(er) Marine Protected Areas

 

New research identifies areas that are important for many marine mammal species in BC, but still quiet
New research identifies areas that are important for many marine mammal species in BC, but still quiet

 

Sound is as important to marine mammals as vision is to us. 

Our new research, published open access in Marine Pollution Bulletin, has mapped areas that are important to 10 marine mammal species in BC, and overlaid those maps with maps of chronic ocean noise from shipping.  Most studies of this kind focus on the problems:  where we still have a lot of work to do to make noisy areas quieter.

This new paper identifies opportunity sites — places that have lots of wildlife but very little ship traffic.  We don’t want to minimize the serious, hard work needed to make noisy areas quieter, but our #oceanoptimism paper notes that there are places that give us hope.  All we have to do is keep the quiet areas quiet.

The next steps are up to managers and policy makers, but there are many things we can do NOW to keep quiet areas quiet.  We can do that by asking ships to slow down through important marine mammal habitats, just like we ask drivers to slow down through school zones.  As ships slow down, they become quieter.  We could identify the noisiest ships, and find financial incentives to replace those noisy ships as fleets age.  Our colleague, Russell Leaper, has figured out that focusing on the noisiest 10% of ships will generate outsize returns.  Finally, we could discuss incentives for Canada’s shipbuilding industry to take advantage of recent technological developments in building quieter ships.

For now, our main point is a simple one:  Haida Gwaii and British Columbia’s north coast are blessed with important marine mammal habitats that are still quiet.  We think of wild, quiet oceans as a valuable natural resource, and Canada is a steward of quiet oceans that are becoming increasingly rare in the developed world.

UPDATE: Check out a nice interpretation of this study from Mongabay.