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Abstract	

Species	distribution	models	(SDMs)	are	a	suite	of	analytical	tools	that	relate	species	distribution	data	

with	information	on	the	environmental	and/or	spatial	characteristics	of	those	locations.	SDMs	typically	

incorporate	static	(e.g.,	depth	and	distance	to	shore)	and	dynamic	(e.g.,	temperature,	salinity,	and	

distance	to	ephemeral	oceanographic	features)	environmental	variables	that	describe	the	physical	

environment.	When	parameterized	by	data	from	well-designed	surveys,	relevant	predictors,	and	an	

appropriately	identified	model,	SDMs	can	characterize	the	natural	distributions	of	species	and	

subsequently	provide	ecological	insight	and	predict	a	species	distribution	across	a	seascape.	Despite	the	

importance	of	the	acoustic	environment	for	marine	organisms,	acoustic	attributes	have	not	been	

incorporated	into	SDMs.	Given	recent	developments	in	the	field	of	marine	acoustics,	we	can	now	

provide	richer	insights	into	species	distributions	related	to	the	acoustic	environment.	Our	ability	to	use	

acoustic	detections	of	marine	mammals	in	SDMs	is	challenged	by	the	uncertainties	inherent	in	passive	

acoustic	data,	such	as	animals	being	present	but	silent	and	masking	during	periods	of	increased	ambient	

noise	in	addition	to	variability	in	detection	distances	of	animal	calls	due	to	the	dynamic	nature	of	

soundscapes.	Adding	to	the	complexity,	sound	can	influence	an	animal’s	behavior	and	movement	

patterns	in	various	ways,	such	as	altering	communication	space,	alerting	predators	to	the	presence	of	

prey,	and	causing	avoidance	of	the	sound	source.	SDMs	could	be	improved	by	the	incorporation	of	

soundscape	data	and	acoustic	species	detection	data.	

	



Introduction	

Understanding	species	distributions	is	an	ecological	underpinning	for	conservation	and	management.	

Species	distribution	models	(SDMs),	sometimes	referred	to	as	“habitat	suitability	models”,	are	a	suite	of	

analytical	tools	that	relate	species	distribution	data	(occurrence	or	abundance)	to	the	environmental	

and	spatial	characteristics	of	the	environment,	or	to	physiological	responses	to	the	environment.	When	

parameterized	by	data	from	well-designed	surveys,	relevant	predictors,	and	an	appropriately	identified	

model,	SDMs	can	characterize	the	natural	distributions	of	species	and	subsequently	provide	ecological	

insight	and	predict	a	species	distribution	across	a	seascape.	The	most	prevalent	type	of	marine-focused	

SDMs	typically	incorporate	static	(e.g.,	depth	and	distance	to	shore)	and	dynamic	(e.g.,	temperature,	

salinity,	and	distance	to	ephemeral	oceanographic	features)	environmental	information	that	reflect	the	

ecological	requirements	of	the	species.	Over	the	last	two	decades,	the	use	of	SDMs	has	dramatically	

increased,	driven	by	a	combination	of	the	need	to	forecast	responses	to	climate	change	and	other	

anthropogenic	disturbances	(Guisan	and	Thuiller	2005),	a	greater	access	to	data	(Hochachka	et	al.	2012),	

and	the	availability	of	new	estimation	methods	to	predict	distributions	such	as	occupancy	estimation	

(MacKenzie	et	al.	2002,	2003).	Given	recent	developments	in	the	field	of	marine	acoustics,	we	can	now	

provide	richer	insights	into	species	distributions	related	to	the	acoustic	environment.	

In	this	review,	we	first	give	a	brief	introduction	to	the	North	Atlantic	right	whale	and	its	conservation	

issues.	Then	we	define	and	provide	an	overview	of	soundscapes,	followed	by	a	review	of	different	sound	

and	noise	measurements.	Next,	we	review	the	different	types	of	species	distribution	models	(SDMs)	that	

could	incorporate	soundscape	parameters	and	presence-only	passive	acoustic	monitoring	data,	

discussing	the	feasibility	and	limitations	of	using	soundscape	metrics	in	such	models.	Our	goal	is	to	

suggest	models	and	metrics	that	can	use	existing	passive	acoustic	monitoring	data	to	understand	the	

relationship	between	soundscapes	and	the	presence	of	vocalizing	North	Atlantic	right	whales	and	begin	



incorporating	all	aspects	of	the	species’	environment.	Finally,	we	present	new	modeling	techniques	that	

utilize	passive	acoustic	detections	to	determine	acoustic	density	and	species	density.	The	acoustic	

environment	is	an	important	feature	of	habitat	and	should	be	included	in	modeling	efforts.	

North	Atlantic	Right	Whales	

The	North	Atlantic	right	whale	(Eubalaena	glacialis)	is	one	of	three	species	of	right	whales	(Committee	

on	Taxonomy	2019)	and	one	of	the	most	endangered	large	whale	species	on	the	planet.	Along	with	the	

North	Pacific	right	whale	(Eubalaena	japonica)	and	Southern	right	whale	(Eubalaena	australis),	all	three	

right	whale	species	were	severely	depleted	by	historical	and	commercial	whaling.	Over	the	last	few	

decades,	several	of	the	breeding	populations	of	Southern	right	whales	(Eubalaena	australis)	have	

steadily	increased	in	number	and	are	now	an	IUCN	Red	List	Least	Concern	species	(Zerbini	and	Cooke	

2017),	although	the	Chili-Peru	subpopulation	is	listed	as	“Critically	Endangered”	(Cooke	2017).	The	North	

Pacific	right	whale	has	two	populations,	a	western	population	with	uncertain	numbers,	and	the	eastern	

population	with	around	30	individuals	(Wade	et	al.	2011).	The	North	Atlantic	right	whale	also	has	two	

populations.	The	western	population	is	thought	to	be	extinct	or	extirpated.	Approximately	450	

individuals	(range	444-471)	remained	in	the	eastern	population	in	2015	(Pace	III	et	al.	2017),	and	the	

most	recently	reviewed	Stock	Assessment	Report	estimates	the	population	at	428	individuals	(95%	

credible	intervals	406-447)	(Hayes	et	al.	2020).		

North	Atlantic	right	whales	(hereafter,	right	whales)	are	an	IUCN	Red	List	Critically	Endangered	species	

(Cooke	2020).	They	are	a	migratory	transboundary	species	that	are	protected	in	the	US	under	the	

Endangered	Species	Act	(since	1970)	and	the	Marine	Mammal	Protection	Act	(since	1973),	and	in	

Canada	under	the	Species	at	Risk	and	Fisheries	Act	(since	2003).	Understanding	the	true	size	and	

distribution	of	the	right	whale	population	before	1750	is	difficult	given	the	inherent	limitations	of	

historical	records,	but	research	into	whaling	records	suggests	a	minimum	of	5,500	right	whales,	possibly	



twice	that	number,	were	killed	in	the	western	North	Atlantic	between	1634	and	1950	(Kraus	and	Rolland	

2007).	After	an	international	agreement	to	ban	the	hunting	of	right	whales	in	1935	was	signed,	the	

population	in	the	western	Atlantic	slowly	started	to	recover,	but	now	the	North	Atlantic	right	whale	

faces	new	anthropogenic	threats	in	the	form	of	climate	change	(Record	et	al.	2019),	ship	strikes	

(Knowlton	and	Kraus	2001,	Mullen	et	al.	2013),	and	entanglement	in	fixed	and	ghost	fishing	gear	

(Knowlton	et	al.	2012,	Moore	2019).	From	2017	through	2019,	30	right	whale	mortalities	were	detected	

while	only	12	calves	were	born	over	the	same	time	period	(Pettis	et	al.	2020).	Due	to	the	small	

population	size	and	high	mortality	rate	of	right	whales,	accurately	describing	their	distribution	and	

understanding	the	processes	that	drive	their	distribution,	including	the	acoustic	environment,	has	

important	conservation	and	management	implications.		

Overview	of	soundscapes	

The	term	‘soundscape’	refers	to	the	acoustic	environment,	or	the	composition/collection	of	sounds	in	a	

particular	location	and	time	(Pieretti	et	al.	2011,	Pijanowski	et	al.	2011).	Soundscapes	are	made	up	of	

anthropogenic	(ship	noise,	sonar,	seismic	exploration,	etc.),	geophysical	(wind,	rain,	waves,	ice,	

earthquakes,	etc.),	and	biological	(animal-made)	sounds,	also	referred	to	as	anthrophony,	geophony,	

and	biophony,	respectively.	Soundscapes	vary	from	one	place	to	another	depending	on	the	local	and	

regional	environments,	the	assemblage	of	sources,	and	the	factors	affecting	sound	propagation,	

including	temperature,	depth,	and	bathymetry.	Thus,	each	habitat	or	local	environment	has	a	unique	

acoustic	signature.	Soundscapes	are	dynamic,	varying	over	temporal	and	spatial	scales	and	across	

frequencies	(Miksis-Olds	et	al.	2018).	The	intensity	and	timing	of	sounds	by	each	contributor	can	also	

vary,	providing	unique	daily	and	seasonal	soundscape	patterns	at	different	locations	depending	upon	

the	makeup	of	sound	producers.	In	the	ocean,	sound	travels	great	distances	and	thus	distant	sounds,	

such	as	from	far	off	shipping,	can	contribute	significantly	to	the	soundscape	(Miksis-Olds	et	al.	2018).	For	



low	frequencies	(<500	Hz),	ambient	noise	can	include	sounds	originating	from	distances	as	far	away	as	

ocean	basins,	while	for	medium	frequencies	(500	Hz	–	25	kHz),	attenuation	prevents	sounds	from	

propagating	as	far,	and	thus	ambient	noise	in	these	frequencies	is	made	up	of	more	local	or	regional	

sounds	(Hildebrand	2009).	Common	low-frequency	(<1	kHz)	underwater	acoustic	contributions	come	

from	ships,	airguns,	wind,	and	whales	(Hildebrand	2009,	Wiggins	et	al.	2016),	as	well	as	from	fish	and	

snapping	shrimp	(for	shallower	waters).	Sound	is	the	primary	sensory	modality	for	marine	organisms	as	

the	other	senses	are	limited.	Many	of	these	organisms	use	sound	for	sensing	and	orienting	in	their	

environment,	communicating,	and	foraging,	and	thus	they	can	be	particularly	sensitive	to	changes	in	

ambient	noise	levels.	

Some	animals,	such	as	some	fish	(Simpson	et	al.	2004,	2008,	Montgomery	et	al.	2006),	birds	(Ward	and	

Schlossberg	2004),	amphibians	(Goutte	et	al.	2013),	and	invertebrates	(Montgomery	et	al.	2006,	Stanley	

et	al.	2012,	Lillis	et	al.	2013,	2016),	orient	and	find	appropriate	habitats	to	settle	in	by	using	cues	from	

soundscapes.	Coral	reef	soundscapes	have	been	found	to	play	a	critical	role	in	the	recruitment	of	

settlement-stage	larval	fish,	corals,	and	invertebrates	such	as	crustaceans	(Simpson	et	al.	2004,	Tolimieri	

et	al.	2004,	Montgomery	et	al.	2006,	Radford	et	al.	2007,	Vermeij	et	al.	2010,	Lillis	et	al.	2016).		

Soundscapes	can	also	affect	the	behavior	of	an	animal,	including	its	acoustic	behavior,	which	can	in	turn	

alter	the	soundscape	(Miksis-Olds	et	al.	2018).	Because	sounds	are	important	habitat	features	for	many	

marine	organisms,	acoustics	should	be	included	in	habitat	modeling	efforts.	The	only	known	effort	to	

incorporate	soundscape	information	into	habitat	models	was	Goutte	et	al.	(2013),	who	looked	at	

characterizing	frog	habitat	using	traditional	habitat	variables	(temperature,	depth,	etc.)	and	ambient	

sound	pressure	level	(SPL).	These	authors	found	that	ambient	SPL	improved	occupancy	predictions	of	

calling	site	selection	in	acoustically	active	frog	species	(Goutte	et	al.	2013).	

	



Factors	affecting	acoustic	detections	

Vocal	rates	and	occurrence	have	been	found	to	vary	with	factors	such	as	behavioral	state	(Jones	and	

Sayigh	2002,	Cook	et	al.	2004,	Nowacek	2005,	dos	Santos	et	al.	2005,	Quick	and	Janik	2008,	Hernandez	

et	al.	2010),	group	size	(Matthews	et	al.	2001,	Jones	and	Sayigh	2002,	Quick	and	Janik	2008,	Hernandez	

et	al.	2010),	group	composition	(i.e.,	groups	with	calves	as	well	as	sex	and	age	differences,	Darling	and	

Bérubé	2001,	Croll	et	al.	2002,	Oleson	et	al.	2007,	Hawkins	and	Gartside	2010),	time	of	year	(Jacobs	et	

al.	1993),	and	time	of	day	(Goold	2000,	Gordon	et	al.	2000,	Matthews	et	al.	2001,	Carlström	2005,	

Stafford	et	al.	2005,	Wiggins	et	al.	2005,	Mellinger	et	al.	2007,	Baumgartner	and	Fratantoni	2008,	

Mussoline	et	al.	2012).	In	order	to	interpret	temporal	and	spatial	patterns	of	acoustic	detections	from	

autonomous	passive	acoustic	recorders,	not	only	is	the	classification	of	sounds	to	the	species	level	

needed	but	also	an	understanding	of	how	vocal	rates	are	correlated	with	each	of	these	factors.	

Therefore,	behavioral	studies	showing	vocal	rates	during	various	behavioral	states	(vocal	activity	

budgets)	as	well	as	daily	behavioral	activity	budgets	are	needed	for	the	interpretation	of	acoustic	data	

that	do	not	have	concurrent	visual	data.		

In	addition	to	these	factors	that	affect	vocal	rates	and	occurrence,	it	is	also	important	to	consider	factors	

that	might	affect	acoustic	detections	on	the	recording	instrument	itself.	These	factors	include	

propagation	conditions,	source	level	of	the	calls,	ambient	noise	levels,	and	receiver	(in	this	case,	

instrument)	sensitivity	(Richardson	et	al.	1995).	Thus,	besides	the	recording	equipment	sensitivity,	

variations	in	detection	distances	are	due	to	both	the	dynamic	oceanographic	conditions	and	ambient	

noise	fluctuations.	

Propagation	efficiency	is	affected	by	depth,	seafloor	bottom	type,	bottom	slope,	the	frequency	range	of	

the	call,	temperature	(and	thus	season),	salinity,	and	pressure.	Deep	water	and	shallow	water	

propagation	models	differ,	with	spherical	spreading	as	the	main	theoretical	mode	of	sound	transmission	



for	deep	water	and	cylindrical	spreading	for	shallow	water	(Richardson	et	al.	1995).	The	depths	of	the	

vocalizing	animals	and	the	receiver	are	important	to	consider	as	well,	as	they	affect	sound	transmission	

and	detection.	Calls	produced	in	the	deep	sound	channel	(sound	fixing	and	ranging,	or	SOFAR,	channel),	

for	example,	will	propagate	great	distances	because	nearly-horizontal	rays	of	sound	become	trapped	

within	that	channel.	Thus,	propagation	losses	due	to	reflections	off	of	the	surface	and	bottom	can	be	

minimized	(Richardson	et	al.	1995).	Sounds	produced	at	the	surface	may	become	trapped	in	a	surface	

duct	that	can	cause	recording	instruments	deployed	at	the	bottom	to	be	in	shadow	zones	(and	therefore	

those	calls	would	not	be	detected).	The	Lloyd	mirror	effect,	which	involves	the	formation	of	interference	

patterns,	also	can	come	into	play	when	calls	are	produced	very	close	to	the	surface	(Richardson	et	al.	

1995).	

Although	the	geoacoustic	properties	of	the	sediment	are	usually	considered	to	be	stable,	different	

seafloor	bottom	types	(sediment	properties)	affect	sound	propagation	differently.	The	slope	of	the	

seafloor	bottom,	especially	in	shallow	water,	also	affects	sound	propagation	(Richardson	et	al.	1995).	If	

sound	encounters	a	downward	sloping	bottom,	it	can	spread	out	into	the	increased	volume.	The	deeper	

water	also	allows	for	fewer	surface	and	bottom	reflections,	though.	Thus,	the	net	effect	of	such	slopes	is	

generally	lower	transmission	loss.	For	sound	encountering	an	upward	sloping	bottom,	the	reverse	is	true	

and	thus	the	net	effect	is	generally	greater	attenuation.	

Lastly,	propagation	is	affected	by	temperature,	salinity,	and	pressure.	Decreasing	the	water’s	

temperature,	salinity,	or	pressure	results	in	a	decrease	in	the	speed	of	sound.	Consequently,	sound	rays	

will	refract	towards	these	areas	of	lower	sound	speed	(Richardson	et	al.	1995).	These	column	properties	

(temperature,	salinity,	and	pressure)	that	affect	transmission	loss	can	change	quickly	–	even	on	a	daily	

time	scale	–	and	so	are	considered	dynamic.	



Ambient	noise	also	affects	the	ability	of	sounds	to	be	detected.	Examples	of	ambient	noise,	which	is	

background	noise	that	includes	all	noise	other	than	the	signals	of	interest,	are	noise	from	waves,	wind,	

rain,	animals,	shipping,	industrial	activities,	and	sonar.	With	increasing	ambient	noise,	signal-to-noise	

ratios	(SNRs)	decrease,	which	decreases	the	detection	distance	of	signals	and	may	even	result	in	signals	

being	masked	(thereby	being	undetectable).	Gordon	et	al.	(2000)	found	that	acoustic	detection	rates	

decreased	with	increasing	sea	state,	wind	speed,	and	background	noise	levels.	Matthews	et	al.	(2001)	

mention	that	high	sea	states	and	wind	can	create	near-surface	air	bubbles	which	can	increase	the	

attenuation	of	calls	produced	at	the	surface.	Thus,	it	is	important	to	take	all	of	these	factors	into	

consideration	when	trying	to	interpret	and	understand	data	from	passive	acoustic	recorders.	Finally,	it	is	

also	important	to	realize	that	different	ambient	noise	levels	might	also	affect	vocal	production	of	

different	species,	with	some	animals	adapting	their	calls	(by	either	intensity	and/or	frequency	

shifts/compensation)	in	louder	environments,	some	choosing	to	be	silent	but	remain	present,	and	yet	

others	choosing	to	leave.	When	incorporating	acoustic	detection	data	into	models,	false	negatives	can	

occur	when	animals	are	present	but	not	vocal,	for	whatever	reason,	or	when	their	vocalizations	are	

masked	due	to	high	levels	of	anthropogenic	noise.	

For	North	Atlantic	right	whales,	maximum	detection	distances	can	vary	greatly	depending	on	the	factors	

mentioned	above	and	thus	are	not	only	site	specific	but	also	temporally	specific,	with	daily	and	seasonal	

differences	in	ambient	noise	and	overall	soundscape	levels.	Xu	(2018)	found	that	estimates	for	detection	

ranges	for	North	Atlantic	right	whales	at	one	location	in	St.	Anns	Bank	at	approximately	375	m	depth	

varied	from	approximately	3-5	km	in	November	to	between	12.5-19	km	in	August,	with	

directional/aspect	differences	due	to	bathymetry.	Call	type	is	another	factor	that	can	affect	detection	

distances	as	different	types	of	calls	have	different	source	levels.	In	addition,	as	mentioned	above,	it	is	

important	to	note	that	some	animals,	such	as	birds	(Cynx	et	al.	1998,	Brumm	2004),	monkeys	(Sinnott	et	

al.	1975,	Halfwerk	et	al.	2016),	bats	(Hage	et	al.	2013,	Luo	et	al.	2016),	túngara	frogs	(Halfwerk	et	al.	



2016),	and	whales	(humpback	whales:	Dunlop	et	al.	2014;	North	Atlantic	right	whales:	Parks	et	al.	2011),	

have	been	found	to	increase	the	amplitude	of	their	calls	with	increased	ambient	noise	levels,	thereby	

demonstrating	the	Lombard	effect.	The	estimates	for	St.	Anns	Bank	were	generated	using	an	average	

source	level	for	up-calls	of	150	dB	rms	re	1µPa	at	1m	(based	on	Parks	and	Tyack	2005b),	ambient	noise	

measured	from	acoustic	recordings,	the	location’s	bathymetry,	and	an	ocean	circulation	model	that	

estimated	sound	propagation.	Detection	distance	in	models	is	influenced	by	what	is	input	for	source	

level.	Detection	ranges	for	right	whale	up-calls	have	previously	been	reported	to	vary	from	8-16	km	

(Laurinolli	et	al.	2003,	Clark	et	al.	2009),	but	these	authors	may	have	used	different	source	levels.	For	

example,	Mussoline	et	al.	(2012)	used	an	average	source	level	of	165	±	3.5	dB	rms	re	µPa	based	on	a	

study	in	the	Stellwagen	Bank	National	Marine	Sanctuary.	When	including	acoustic	detections	into	

models	for	habitat	distributions,	providing	realistic,	albeit	estimated,	detection	distances	are	important.	

These	detection	distances	should	be	estimated	on	not	only	a	monthly	or	seasonal	scale	(as	water	

column	properties	change	considerably	throughout	the	year),	but	also	on	a	daily	scale,	as	daytime	and	

nighttime	column	properties	also	can	be	quite	different	(Xu	2018).	

Types	of	sound	and	noise	measurements	

Typical	soundscape	measurements	include	metrics	such	as	(broadband)	SPLs,	power	spectral	density	

(PSD),	percentile	PSD	levels,	octave	analysis,	and	sound	level	exceedance	percentiles.	SPL,	typically	

measured	on	a	logarithmic	scale	due	to	the	large	range	of	pressures	that	mammals	can	perceive,	is	a	

ratio	of	the	pressure	of	a	sound	to	a	reference	pressure	and	uses	a	single	number	to	describe	the	sound	

level	over	a	specified	range	of	frequencies	(Merchant	et	al.	2015).	The	reference	pressure	for	

underwater	sounds	is	1	µPa.	Measurements	of	underwater	acoustic	pressure	are	considered	to	be	in	

RMS	unless	indicated	(Hildebrand	2009).	The	RMS	level,	also	called	the	arithmetic	mean,	is	the	most	

common	averaging	method	used	for	ambient	noise	and	calculates	the	mean	before	converting	to	



decibels.	The	PSD	describes	the	energy	found	in	linearly-spaced	frequency	bands,	often	1-Hz	bands,	

showing	how	the	power	is	distributed	over	a	range	of	frequencies.	The	Welch	method	(Welch	1967)	is	

often	used	to	make	computing	PSDs	more	efficient	(Merchant	et	al.	2015).	In	octave	band	analysis,	

which	is	typically	performed	with	1/3-octave	band	levels	(TOLs),	frequency	is	typically	plotted	on	a	

logarithmic	scale	such	that	the	octaves,	which	widen	exponentially	as	frequency	increases,	are	evenly	

spaced	and	the	power	in	these	octave	bands	is	measured	(Merchant	et	al.	2015).	Because	TOLs	are	

considered	the	most	relevant	for	how	mammals	hear,	they	may	be	beneficial	for	characterizing	habitat	

(Merchant	et	al.	2015)	and	are	sometimes	used	in	studies	examining	how	noise	affects	marine	mammals	

(Todd	et	al.	2015).	Sound	level	exceedance	percentiles,	expressed	as	LN,	describe	the	sound	level	

exceeded	for	N%	of	a	specified	measurement	time	(Miksis-Olds	et	al.	2018).	Percentile	levels	are	often	

used	when	calculating	the	noise	in	the	environment.	Plotting	various	percentile	levels	across	the	

frequency	spectrum	can	show	a	habitat’s	range	of	sound	levels	and	indicate	approximately	how	the	

sound	levels	are	distributed,	perhaps	also	indicating	the	amount	of	acoustic	masking	that	might	be	

occurring	in	the	habitat	for	different	species	(Merchant	et	al.	2015).		Dekeling	et	al.	(2014)	

recommended	that	when	examining	soundscape	measurements,	daily	statistics	should	be	calculated	in	

1-minute	windows	and	that	the	arithmetic	mean	and	percentile	PSD	levels	should	be	calculated	in	all	

1/3	octave	bands	less	than	1	kHz	for	each	24	h	period.	

Recently,	ecoacoustic	metrics,	such	as	the	acoustic	complexity	index	(ACI),	the	acoustic	diversity	index	

(ADI),	the	bioacoustic	index	(BI),	acoustic	entropy	(H),	and	the	normalized	difference	soundscape	index	

(NDSI),	have	been	used	as	proxies	for	indicating	ecosystem	biodiversity,	species	richness,	species	

composition,	and	biological	acoustic	activity	(Sueur	et	al.	2008,	Towsey	et	al.	2014,	Pieretti	et	al.	2017),	

although	several	have	been	shown	to	be	sensitive	to	anthropogenic	noise	(Depraetere	et	al.	2012,	

McWilliam	and	Hawkins	2013,	Parks	et	al.	2014,	Gasc	et	al.	2015,	Desjonquères	et	al.	2015,	Fairbrass	et	

al.	2017).	These	acoustic	indices,	which	are	statistical	analyses	of	the	sound	levels	or	acoustic	energy	of	



the	soundscape	that	can	be	used	to	estimate	the	diversity	of	sounds,	were	originally	developed	for	

terrestrial	habitats,	mainly	to	look	at	bird	composition	and	the	number	of	vocal	species	in	an	area	

(Pieretti	et	al.	2011),	and	have	been	used	to	compare	different	habitats	(characterizing	variability	and	

differences)	with	mixed	results	(Towsey	et	al.	2014,	Lellouch	et	al.	2014).	Even	more	recently,	the	

application	of	these	acoustic	indices	(especially	ACI)	for	freshwater	(Desjonquères	et	al.	2015,	Bolgan	et	

al.	2017,	Linke	et	al.	2020)	and	marine	environments	(McWilliam	and	Hawkins	2013,	Parks	et	al.	2014,	

Staaterman	et	al.	2014,	Kaplan	et	al.	2015,	Butler	et	al.	2016,	Harris	et	al.	2016,	Buscaino	et	al.	2016,	

Bertucci	et	al.	2016,	Pieretti	et	al.	2017,	Buxton	et	al.	2018,	McKenna	et	al.	2018)	has	been	explored	with	

mixed	success	(see	Table	1).	Because	they	were	originally	developed	for	terrestrial	environments,	this	

adaptation	to	aquatic	environments	needs	further	research	to	determine	their	robustness	and	how	well	

they	correspond	to	various	ecological	metrics,	especially	in	noisy	aquatic	environments	(and	especially	

when	noise	occurs	in	the	same	frequency	bands	as	various	species’	vocalizations).	In	addition	to	

including	more	standard	soundscape	measurements	in	modeling	efforts	described	in	more	detail	below,	

including	ecoacoustic	indices,	which	granted	do	not	focus	on	single	species	but	instead	communities,	

could	potentially	help	identify	areas	of	ecological	importance	and	thus	should	be	considered,	especially	

since	they	can	be	calculated	quickly	(such	as	with	the	R	package	‘seewave’	(SUEUR	et	al.	2008))	and	thus	

inexpensively.	Incorporating	information	that	includes	what	marine	animals’	perceive	in	their	

environment	(e.g.,	levels	of	ambient	noise,	anthropogenic	sources,	such	as	shipping	or	seismic	activity,	

and	intensity	of	those	sounds,	conspecific	and	nonconspecific	vocalizations,	etc.)	might	help	with	

predicting	what	habitats	are	preferred	(i.e.,	using	sound	to	predict	animal	distribution)	if	in	fact	the	focal	

species	uses	sound	to	choose	habitats,	as	some	species	have	been	found	to	do	(see	“Overview	of	

soundscapes”).	As	Risch	and	Parks	(2017)	suggested,	these	metrics	can	also	help	determine	and	

document	changes	in	a	habitat’s	acoustic	signature,	the	biological	component	of	which	might	change	as	

a	result	of	changes	in	biodiversity	possibly	caused	by	increased	anthropogenic	noise	levels,	for	example.	



	

	 	



Table	1.	Studies	that	applied	ecoacoustic	metrics	in	aquatic	environments,	with	information	about	study	area,	ecoacoustic	metric(s)	used,	and	

findings.	

Study	 Study	area	 Ecoacoustic	metric(s)	used	 Findings	in	relation	to	ecoacoustic	metrics	

McWilliam	and	Hawkins	

(2013)	

Protected	inlet	in	

Ireland	

ACI,	ADI	 Found	ACI	(and	ADI,	but	not	as	strongly)	to	be	directly	

correlated	to	the	number	of	snapping	shrimp	snaps;	

authors	cautioned	that	high	snap	levels	could	mask	

other	biological	sounds	and	ecoacoustic	metrics	might	

not	provide	such	detailed	information;	found	ACI	and	

ADI	to	be	sensitive	to	both	anthrophony	and	geophony	

Parks	et	al.	(2014)	 South	Atlantic,	Indian,	

and	North	Pacific	

ocean	basins	

Acoustic	biodiversity	index	

(acoustic	entropy	index	(H))	

Found	H	to	be	sensitive	to	anthrophony;	after	

modifying	H	by	subtracting	out	seismic	exploration	

signals	from	background	noise	(thereby	creating	a	noise	

compensated	entropy	index,	HN),	they	found	this	new	

index	to	be	more	representative	of	biological	patterns	

Staaterman	et	al.	(2014)	 Coral	reefs	in	the	

Florida	Keys	(USA)	

ACI	 Found	ACI	values	strongly	agreed	with	the	“visual	

patterns	of	the	soundscapes”;	stated	that	more	work	



Study	 Study	area	 Ecoacoustic	metric(s)	used	 Findings	in	relation	to	ecoacoustic	metrics	

needs	to	be	done	for	ecological	metrics	to	be	linked	to	

acoustic	measures	

Desjonquères	et	al.	(2015)	 3	temperate	ponds	in	

Paris,	France	

ACI,	temporal	entropy	(Ht),	

spectral	entropy	(Hf),	

acoustic	richness	(AR),	

median	envelope	energy	

(M),	number	of	major	

peaks	(NP)	of	mean	

frequency	spectrum	

Found	ACI,	M,	and	NP	to	be	positively	correlated	with	

abundance	and	richness	but	also	SNR;	found	Ht	and	Hf	

to	be	negatively	correlated	with	abundance,	richness,	

and	SNR;	found	AR	to	be	negatively	correlated	with	SNR	

and	not	correlated	with	abundance	or	richness	-	

HOWEVER,	if	background	noise	was	used	as	a	control	

variable,	then	AR	was	found	to	be	positively	correlated	

with	both	abundance	and	richness	and	thus	“a	good	

candidate	for	revealing	acoustic	diversities	within	

ponds”;	found	all	metrics	were	sensitive	to	background	

noise	

	

Kaplan	et	al.	(2015)	 3	tropical	reefs	in	U.S.	

Virgin	Islands	

ACI,	acoustic	entropy	index	

(H)	

Neither	ACI	nor	acoustic	entropy	index	provided	results	

that	agreed	with	other	analyses;	snapping	shrimp	



Study	 Study	area	 Ecoacoustic	metric(s)	used	 Findings	in	relation	to	ecoacoustic	metrics	

affected	acoustic	entropy	values	

Bertucci	et	al.	(2016)	 Coral	reefs	of	Moorea	

Island,	South	Pacific	

ACI	 Found	a	positive	correlation	between	ACI	and	fish	

species	diversity	

Busciano	et	al.	(2016)	 Mediterranean	Sea	–	

shallow-water	marine	

protected	area	

ACI	 Found	ACI	corresponded	to	fish	vocalization	counts	and	

to	the	SPLs	for	the	octave	bands	in	which	fish	sounds	

occur;	found	ACI	to	be	correlated	with	snapping	shrimp	

sounds	in	the	octave	bands	occupied	by	such	sounds;	

did	not	find	ACI	to	be	correlated	with	anthrophony	or	

geophony	

Butler	et	al.	(2016)	 3	near-shore	tropical	

habitats	in	the	Florida	

Keys	(USA)	

ACI	 Found	ACI	to	be	correlated	with	snapping	shrimp	snaps,	

which	do	not	add	to	the	soundscape	‘complexity’	(in	

terms	of	variability	in	the	frequency	and	amplitude	of	

sounds	as	they	are	broadband	sounds	encompassing	

many	frequencies);	authors	stated	that	in	places,	such	

as	reefs,	where	fish	calls	are	prominent,	the	ACI	could	

be	a	good	indicator	of	‘complexity’	since	fish	calls	have	



Study	 Study	area	 Ecoacoustic	metric(s)	used	 Findings	in	relation	to	ecoacoustic	metrics	

smaller	frequency	ranges	

Harris	et	al.	(2016)	 Temperate	reefs	of	NE	

New	Zealand	

ACI,	acoustic	richness	(AR),	

acoustic	entropy	index	(H)	

Found	ACI	and	H	to	be	robust	indices	with	strong	

potentials	for	analyses	of	temperate	reefs;	ACI	was	a	

good	indicator	of	evenness;	H	was	positively	correlated	

with	number	of	species;	AR	failed	to	meet	authors’	

requirements	for	being	a	successful	ecoacoustic	metric	

Bolgan	et	al.	(2017)	 Windermere	Lake,	UK	 ACI	 Found	ACI	was	influenced/positively	correlated	by	fish	

spawning	activities	(mainly	noise	from	gravel	

displacement	but	also	fish	air	passage	sounds)	and	

insect	sounds;	also	found	lower	ACI	values	when	

anthropogenic	noise	increased	(peaks	in	SPL)	which	was	

expected	due	to	the	more	constant	intensity	values	of	

the	anthrophony	

Pieretti	et	al.	(2017)	 Mediterranean	Sea	–	

rocky	bottom	

ACI	 For	frequencies	>	620	Hz,	found	ACI	was	positively	

correlated	to	diurnal	patterns	of	snapping	shrimp	

snaps;	for	frequencies	<	620	Hz,	ACI	was	associated	



Study	 Study	area	 Ecoacoustic	metric(s)	used	 Findings	in	relation	to	ecoacoustic	metrics	

with	fish	choruses	at	night	but	failed	to	find	the	peak	in	

fish	vocal	activity	(off	by	2	hrs),	instead	peaking	with	an	

increase	in	the	intensity	of	snapping	shrimp	activity	

during	that	time	

Buxton	et	al.	(2018)	 8	marine	sites	in	

Everglades	National	

Park	(USA)	(and	43	

terrestrial	sites)	

ACI,	temporal	entropy	(Ht),	

spectral	entropy	(Hf),	total	

entropy	(H),	normalized	

difference	soundscape	

index	(NDSI),	ADI,	acoustic	

evenness,	acoustic	richness	

(AR),	roughness,	and	other	

various	acoustic	metrics		

Found	that	acoustic	indices	did	not	perform	as	well	in	

marine	(versus	terrestrial)	environments	in	terms	of	

predicting	bioacoustic	activity;	authors	noted	that	the	

frequencies	of	biological	sounds	and	anthropogenic	

noise	often	overlap	in	marine	environments	unlike	in	

terrestrial	environments;	these	authors	included	

combinations	of	indices	in	modeling	efforts	and	found	

that	combinations	of	indices,	versus	a	single	index,	

were	more	effective	for	making	predictions	of	

bioacoustic	activity	(looking	at	diversity	of	animal	

sounds)	

McKenna	et	al.	(2018)	 Gulf	of	Maine	 ACI	 Found	that	incorporating	ACI	was	helpful	in	predicting	



Study	 Study	area	 Ecoacoustic	metric(s)	used	 Findings	in	relation	to	ecoacoustic	metrics	

habitats	at	the	community	level;	models	performed	

better	when	using	broad	acoustic	indices	(“community”	

metrics)	versus	species-specific	ones	

Linke	et	al.	(2020)	 River	in	northern	

Australia	

ACI,	acoustic	entropy	index	

(H),	median	of	the	

amplitude	envelope	(M)	

Found	ACI	focused	on	specific	frequency	bands	(ACI500-

1000	Hz)	to	be	correlated	to	the	dawn	fish	chorus;	found	

ACI500-1000	Hz	and	H	to	be	correlated	with	stream	flow	

noise;	found	ACI	and	M	to	be	sensitive	to	geophony	

(stream	flow	noise)	and	associated	also	with	insect	

choruses	–	with	authors	suggesting	these	sounds	

overrode	other	acoustic	events;	none	of	the	measured	

indices	“picked	up	the	high	acoustic	richness	between	6	

and	10	a.m."	

	



Species	distribution	models	

There	are	three	types	of	model	approaches	to	estimate	a	species	distribution:	a	mechanistic	approach,	a	

process-oriented	approach,	and	a	correlative	approach.	A	mechanistic	SDM	is	a	coupled,	environmental-

life	history	model	that	incorporates	information	on	a	species’	known	physiological	tolerances	to	

environmental	conditions	(Kearney	and	Porter	2009,	Melle	et	al.	2014).	These	models	are	less	prevalent	

because	physiological	responses	of	a	species	to	environmental	factors	are	often	unknown.	In	a	recent	

literature	review	of	marine	SDMs,	Melo-Merino	et	al.	(2020)	found	only	13	articles	that	developed	

mechanistic	SDMs	out	of	the	328	articles	selected	for	their	review.	None	of	the	13	articles	focused	on	

marine	mammals.	Process-oriented	SDMs	consider	demographic	processes	that	influence	a	species	

range,	such	as	life	and	death	rates	and	dispersal.	This	model	type	is	considered	a	“hybrid”	model	

(Peterson	et	al.	2015)	when	it	is	combined	with	correlative	approaches.	For	example,	Young	et	al.	(2020)	

combined	habitat,	oceanographic,	and	biological	data	within	a	dispersal	model	(Treml	et	al.	2015)	to	

understand	the	patterns	of	Australia’s	blacklip	abalone	population	connectivity.	Correlative	SDMs	are	

the	most	widely	used	form	of	the	species	distribution	model	and	assumes	that	the	current	species	

distribution	is	a	good	indicator	of	its	ecological	requirements.	Correlative	SDMs	relate	presence-only	or	

presence-absence	data	with	environmental	predictors	and	fit	a	relationship	between	the	environmental	

predictors	and	presence-only	or	presence-absence	data	(Redfern	et	al.	2006).	When	SDMs	are	used	to	

predict	a	species	distribution	in	geographic	space,	they	are	referred	to	as	“predictive	habitat	distribution	

models”	or	“spatially	explicit	habitat	suitability	models”	(Franklin	2010).	Predictive	SDMs	have	recently	

been	developed	for	near	real-time	monitoring	of	highly	migratory	species	(Hazen	et	al.	2017,	Abrahms	

et	al.	2019,	Blondin	et	al.	2020)	and	used	to	evaluate	and	mitigate	ship-strike	risk	(Redfern	et	al.	2019,	

2020).	Most	correlative	SDMs	are	developed	with	presence-absence	data,	but	due	to	the	presence-only	

nature	of	passive	acoustic	monitoring,	we	restrict	the	scope	of	our	correlative	SDM	model	suggestions	

to	those	that	focus	on	presence-only	data	and	then	provide	suggestions	on	variable	selections.		



Envelope	models	

One	of	the	first	approaches	developed	to	quantitatively	describe	environmental	conditions	associated	

with	species	distributions	was	the	envelope	model.	Envelope	models	are	based	on	simple	rules	and	

assumptions,	and	use	presence-only	data	without	the	need	to	create	background	data	or	pseudo-

absence	data	(Guisan	et	al.	2017).	These	models	use	the	observed	range	of	environmental	conditions	as	

the	definition	of	habitat	with	rules	defined	by	the	minimum	and	maximum	values	or	quantiles	(e.g.,	5th	

and	95th	quantiles)	of	environmental	variables.	Environmental	conditions	above	or	below	the	quantiles	

(or	minimum	and	maximum	values)	are	considered	locations	outside	of	the	envelope	and	therefore	not	

suitable	habitat	(see	Figure	1).	This	approach	assumes	that	all	environmental	variables	considered	are	

relevant	and	that	locations	must	be	within	the	envelope	of	all	variables.	

	

Figure	1:	Acoustic	envelope	model	using	the	minimum	and	maximum	values	of	two	acoustic	environmental	metrics	to	define	the	
acoustic	habitat	for	the	species.	

	

				



Envelope	models	are	simple	and	can	provide	an	initial	description	of	the	physical	and	acoustic	

environment,	but	these	models	are	spatially	and	temporally	coarse.	We	found	one	peer-reviewed	article	

that	developed	a	rule-based	envelope	model	for	marine	mammals	(Kaschner	et	al.	2006).	Kaschner	et	al.	

(2006)	used	bottom	depth,	mean	annual	sea	surface	temperature,	mean	annual	distance	to	ice	edge,	

and	distance	to	land	to	define	niche	categories	(habitat	usage)	for	115	species	of	marine	mammals	

world-wide.	When	projected	into	geographic	space,	the	niche	categories	broadly	predict	habitat	ranges.	

Envelope	models	are	also	intolerant	of	outliers	and	can	easily	inflate	predicted	habitat	areas	(Guisan	et	

al.	2013),	so	while	they	are	good	for	exploratory	analyses,	we	do	not	suggest	using	an	envelope	model	

for	spatial	or	temporal	predictions.	

Maximum	Entropy	Models	

A	more	robust	model	that	can	be	developed	using	acoustic	detections	and	soundscape	metrics	is	a	

maximum	entropy	model.	Unlike	most	correlative	SDMs	that	rely	on	presence	and	absence	information,	

a	maximum	entropy	model,	or	MaxEnt	(Phillips	et	al.	2006,	Phillips	and	Dudík	2008),	was	designed	to	

utilize	presence-only	information.	Initially	developed	to	take	advantage	of	the	plethora	of	specimen	

records	in	museum	databases	(Elith	et	al.	2011),	MaxEnt	models	are	now	widely	applied	in	terrestrial	

systems	(Merow	et	al.	2013)	and	are	gaining	a	foothold	in	marine	studies	in	general	and	marine	

mammal	studies	in	particular	(Smith	et	al.	2012,	Bombosch	et	al.	2014,	Tobeña	et	al.	2016,	Derville	et	al.	

2018,	Passadore	et	al.	2018,	Kent	et	al.	2020).	MaxEnt	models	have	shown	good	predictive	ability	with	

small	sample	sizes	(Hernandez	et	al.	2006,	Wisz	et	al.	2008)	and	can	account	for	potential	sampling	

biases	inherent	in	sighting	data	(Phillips	et	al.	2006).	With	the	high	cost	of	ship-based	and	aerial	

systematic	surveys	that	are	needed	to	obtain	presence-absence	data	for	regression	habitat	modeling	

techniques,	it	is	not	surprising	that	marine	mammal	ecologists	are	increasingly	exploring	ways	to	utilize	

less	expensive	data	collected	with	presence-only	methods.	Although	MaxEnt	was	initially	presented	as	a	



machine	learning	technique,	Elith	et	al.	(2011)	present	MaxEnt	in	statistical	terms	that	are	likely	more	

familiar	to	ecologists.		

Unlike	an	envelope	model,	MaxEnt	models	require	environmental	information	at	background	locations.	

In	general,	a	MaxEnt	method	models	a	species	distribution	by	estimating	the	density	of	environmental	

covariates	conditional	on	species	presence	(Franklin	2010).	The	maximum	entropy	theory	states	that	a	

“probability	distribution	with	maximum	entropy	(i.e.,	a	distribution	that	is	the	most	spread-out	or	

closest	to	a	uniform	distribution)	is	the	best	approximation	for	an	unknown	distribution	because	it	

agrees	with	everything	that	is	known	but	avoids	assuming	anything	that	is	not	known”	(Elith	et	al.	2011).	

In	maximum	entropy,	multivariate	distribution	of	suitable	habitat	conditions	(environmental	and	

acoustic	information)	is	constrained	by	the	expected	values	of	the	environmental	and	acoustic	data	

estimated	from	the	set	of	species	presence	observations	(Figure	2).	In	the	case	of	a	species	distribution	

model,	the	unconstrained	distribution	comes	from	the	background	points	as	the	environmental	factors	

in	the	study	area.	The	constraint	is	the	distribution	of	the	expected	values	from	the	

observations/detections	of	species	presence	(Franklin	2010,	Elith	et	al.	2011).	Constraints	are	expressed	

in	terms	of	simple	functions	(known	as	features	in	the	machine	learning	literature)	that	are	an	expanded	

set	of	transformations	of	the	original	covariates,	and	the	output	of	a	MaxEnt	model	is	a	logistic	format	

that	estimates	the	probability	of	presence	(Phillips	and	Dudík	2008).							

	



	

Figure	2:	Schematic	of	a	MaxEnt	model.	Figure	adapted	from	Elith	et	al	(2011).	

	

One	important	caveat	of	a	MaxEnt	model	is	that	it	assumes	that	all	habitat	variables,	both	acoustic	and	

environmental,	represent	all	the	environmental	conditions	and	are	available	from	the	entire	study	area.	

Acoustic	variables	might	have	to	be	interpolated	between	recorders,	or	more	recorders	would	need	to	

be	deployed	to	fill	in	the	gaps.			

Acoustic	Distance	

Our	last	suggestion	involves	calculating	acoustic	detection	distances	to	compile	summary	statistics	on	

the	detections	and	acoustic	metrics.	We	call	this	sampling	the	acoustic	distance.	Xu	(2018)	calculated	

the	estimated	detection	range	of	North	Atlantic	right	whales	in	different	months	from	an	acoustic	

recorder	on	St.	Anns	Bank.	These	calculations	were	based	on	right	whale	up-call	detection	distances	and	

varied	greatly	depending	on	the	month	(Figure	3).	The	detection	distance	estimates	for	St.	Anns	Bank	

were	generated	using	an	average	source	level	for	up-calls	based	on	Parks	and	Tyack	(2005),	ambient	

noise	measured	from	acoustic	recordings,	bathymetry,	and	an	ocean	circulation	model	that	estimated	

sound	propagation.	Although	there	is	interest	in	what	these	data	present	in	terms	of	call	rates	and	



potential	masking,	these	data	also	provide	a	way	to	explore	the	environment	within	which	an	animal	is	

calling	and	can	be	detected.	For	example,	if	we	know	the	expected	source	level	of	an	animal	vocalizing	a	

specific	type	of	call,	and	we	know	the	range	estimate	for	that	animal	in	a	given	time	period,	we	can	

determine	the	distance	an	animal	is	from	the	hydrophone.	We	cannot	determine	an	exact	location	with	

one	hydrophone,	but	we	create	concentric	distance	bins	from	the	hydrophone’s	location	and	determine	

how	many	calls	occur	within	each	distance	bin.	Summarizing	the	calls	within	each	bin	provides	

information	on	far	away	or	how	close	the	animals	are	when	calling	in	relation	to	the	hydrophone.	The	

environmental	and	acoustic	metrics	within	each	distance	bin	can	also	be	summarized	and	might	provide	

finer	scale	information	about	an	animal’s	environment	compared	to	an	area	estimate	that	encompasses	

the	entire	detection	area.	Additionally,	when	including	acoustic	detections	into	models	for	habitat	

distributions,	providing	realistic,	even	if	only	estimated,	detection	distances	are	important.	As	previously	

mentioned,	these	detection	distances	should	be	estimated	on	not	only	a	monthly	or	seasonal	scale	(as	

water	column	properties	change	considerably	throughout	the	year),	but	also	on	a	daily	scale,	as	daytime	

and	nighttime	column	properties	also	can	be	quite	different.	



	

Figure	3:	Acoustic	detection	range	estimates	of	North	Atlantic	right	whales	off	St.	Anns	Bank	from	July	2017	to	November	2017.	
Analysis	by	Jinshan	Xu.	

	

Integrating	sound	and	noise	measurements	into	SDMs	

The	acoustic	parameters	we	suggest	processing	and	including	in	these	models	are:	octave	band	SPLs,	

TOLs	for	the	frequencies	of	the	focal	species’	main	call	type	(for	North	Atlantic	right	whales:	63-200	Hz	

encompasses	the	main	frequencies	of	up-calls),	sound	level	exceedance	percentiles1,	and	the	acoustic	

detections.	We	suggest	including	octave	bands	up	to	1	kHz	in	order	to	potentially	provide	more	

information	about	habitat	suitability.	As	mentioned	previously,	some	animals	use	sound	from	the	

environment	to	choose	habitats	(i.e.,	some	animals	might	be	more	attracted	to	areas	with	lower	levels	

of	anthropogenic	noise	and	some	animals	might	be	more	attracted	to	areas	with	higher	levels	of	call	

diversity).	We	also	recommend	processing	these	parameters	in	1-hr	(for	acoustic	detections)	and	3-hr	

(for	soundscape	measurements)	bins.	Acoustic	detections	are	often	reported	in	hourly	bins	(often	times	

as	presence/absence	data,	especially	when	using	automated	detectors),	and	soundscapes	change	

																																																													
1	Sound	level	exceedance	percentiles	can	be	used	to	determine	how	much	of	the	time	there	might	be	masking.	



throughout	the	day,	often	times	with	diel	patterns	that	can	change	over	longer	time	periods	

(seasonally).	A	3-hr	bin	would	capture	many	of	these	changes	in	the	soundscape	as	well	as	allow	for	

better	estimations	of	detection	distances,	as	different	noise	levels	can	affect	detection	probabilities	and	

ranges.		

When	looking	more	broadly	at	a	community	level	(versus	species	level),	ecoacoustic	metrics,	as	

mentioned	previously,	have	been	used	as	proxies	for	indicating	ecosystem	biodiversity,	species	richness,	

species	composition,	and	biological	acoustic	activity	(Sueur	et	al.	2008,	Towsey	et	al.	2014,	Pieretti	et	al.	

2017).	As	their	incorporation	into	models	for	aquatic	environments	is	relatively	new	and	limited	with	

mixed	results,	we	suggest	first	focusing	on	including	only	one	or	two	ecoacoustic	metrics	into	species	

distribution	models:	the	ACI	and/or	the	acoustic	entropy	index.	We	suggest	incorporating	the	ACI,	which	

quantifies	soundscape	complexity	by	computing	the	variability	of	amplitude	in	acoustic	recordings,	

because	it	is	one	of	the	most	popularly	used	ecoacoustic	metrics	(see	Table	1	for	aquatic	examples),	and	

although	there	have	been	mixed	results	using	it,	this	metric	has	often	times	been	correlated	with	

diversity	and	richness.	The	ACI	has	been	found	to	be	efficient	in	filtering	out	anthropogenic	noise	in	the	

terrestrial	environment	as	it	is	based	on	the	assumption	that	such	noise	has	more	constant	values	than	

biotic	sounds	(Blondel	and	Hatta	2017).	While	this	assumption	may	still	be	mostly	true	in	the	marine	

environment,	anthropogenic	noise	in	this	environment	often	overlaps	with	marine	animal	sounds	(i.e.,	

fish	and	baleen	whale	vocalizations)	and	thus	this	ecoacoustic	metric	does	not	always	work	as	well.	Still,	

the	ACI	has	often	been	used	as	a	proxy	for	marine	sounds	of	biological	origin	and	thus	should	be	

explored	further,	especially	since	McKenna	et	al.	(2018)	had	some	success	determining	community	

richness	and	diversity	when	incorporating	this	metric	into	a	random	forest	model2.	The	acoustic	entropy	

																																																													
2	McKenna	et	al.	(2018)	ran	a	random	forest	model	using	habitat	features	(sea	surface	temperature,	seafloor	
composition,	sea	floor	complexity,	sea	surface	cholorphyll),	meta	features	(depth,	time	of	year),	vessel	features	
(fishing	vessels,	commercial	vessel	traffic),	and	acoustic	features	(27	different	features).	The	27	acoustic	features	
included	SPL	metrics,	time-domain	impulsiveness	metrics,	spectrogram	complexity	metrics	(involving	the	ACI	and	



index	is	made	up	of	temporal	(Ht)	and	spectral	entropy	(Hf)	and	has	been	found	to	increase	with	the	

number	of	singing	species,	at	least	in	terrestrial	environments.	We	recommend	including	this	

ecoacoustic	index	because	Parks	et	al.	(2014)	examined	its	usefulness	in	the	marine	environment	and	

found	it	had	potential	in	representing	biological	patterns	after	it	was	modified	with	a	simple	background	

removal	technique,	which	helped	remove	noise	from	seismic	activity	that	was	masking	biological	

sounds.	

Recommendations	

The	acoustic	environment	is	an	important	habitat	feature	for	marine	mammals	and	other	marine	

organisms	that	use	sound;	therefore,	it	should	be	included	in	habitat	modeling	efforts.	With	the	

advances	in	marine	acoustic	technologies	resulting	in	the	ability	to	collect	large	amounts	of	acoustic	

data	at	a	relatively	affordable	costs,	and	the	fact	that	marine	mammal	acousticians	have	described	and	

catalogued	many	sounds	produced	by	marine	mammals,	the	data	are	now	available	to	explore	not	just	

acoustic	detections,	but	also	the	acoustic	environment.	Prior	to	including	the	suggested	acoustic	

parameters	metrics	into	SDMs,	we	recommend	first	performing	a	Principal	Component	Analysis	(PCA)	to	

determine	which	acoustic	parameters	might	be	more	important	(see	Goutte	et	al.	2013).	

We	also	need	to	collect	acoustic	soundscape	data	on	the	full	spatial	range	of	a	species	to	provide	

ecological	inferences	within	the	entire	range	of	the	species	distribution.	With	the	acoustic	collaborations	

along	the	East	Coast	of	the	US	and	Canada,	most	of	the	known	right	whale	habitat	range	has	been	

acoustically	sampled,	albeit	on	a	coarse	spatial	scale.	Now	is	the	time	for	acousticians	and	distribution	

																																																																																																																																																																																																				
day	and	night),	and	raw	detections	from	an	automated	detector.	They	used	singular	value	decomposition	to	
condense	768	sound	level	metrics	(based	on	hour	of	day,	frequency	range	(including	the	full	frequency	spectrum	
as	well	as	octave	bands	between	16-1000	Hz),	sound	level	exceedance	percentiles	(L90,	L50,	and	L10)	and	the	
equivalent	continuous	sound	pressure	level	(Leq))	down	to	12	SPL	features.	They	found	that	acoustical	features	did	
have	predictive	power,	with	the	models	working	best	with	broad	community	ecological	metrics	(i.e.,	ACI),	which	
are	useful	for	predicting	habitats	at	the	community	level	(looking	at	community	richness	and	diversity)	but	not	at	
the	species	level.	



modelers	to	come	together	and	work	to	combine	these	fields.	For	example,	Davis	(2020)	worked	with	

modelers	to	present	a	way	to	combine	visual	and	passive	acoustic	monitoring	data	in	the	form	of	

occupancy	models	to	address	North	Atlantic	right	whale	distribution	questions.	We	believe	that	this	type	

of	collaboration	to	combine	different	data	sources	is	the	forefront	in	marine	mammal	species	

distribution	modeling	and	conservation	of	protected	species.	

Even	though	we	suggested	presence-only	models	to	limit	our	recommendations	to	the	current	availably	

of	data	sources,	new	techniques	are	being	developed	using	passive	acoustic	monitoring	to	estimate	

marine	mammal	species	density.	Barlow	et	al.	(2021)	and	Thode	et	al.	(2020)	provide	new	statistical	

techniques	to	address	detection	functions	using	passive	acoustic	monitoring	data,	including	using	PAM	

data	in	spatial	capture-recapture	methods.	These	methods	rely	on	a	single	vocalization	being	recorded	

on	multiple	hydrophones.	Additionally,	we	only	made	suggestions	based	on	data	from	stationary	

hydrophones.	There	is	potential	to	discern	soundscape	information	from	towed	hydrophones	and	relate	

the	acoustic	environment	to	sighting	data	from	visual	and	acoustic	line-transect	surveys	which	would	

provide	a	more	statistically	robust	analysis	of	species	abundance.	

We	also	did	not	address	model	validation.	Although	this	is	a	critical	component	to	any	modeling	

endeavor,	we	did	not	think	it	prudent	to	venture	into	model	validation	for	this	exercise	without	having	

datasets	to	test.	

This	is	an	exciting	time	to	start	probing	the	depths	of	coupling	soundscape	information	and	species	

sightings	and	acoustic	detections	to	better	understand	North	Atlantic	right	whale	ecology	and	by	

extension,	provide	better	conservation	efforts	for	this	critically	endangered	species.	 	
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